Title |
Year |
Venue |
Link |
Ref |
AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning |
2023 |
Conference on Neural Information Processing Systems |
link |
Tavakoli, M., Chiu, Y.T.T., Shmakov, A., Carlton, A.M., Van Vranken, D. and Baldi, P., 2023. AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning. arXiv preprint arXiv:2311.01118.
|
RMechDB: A Public Database of Elementary Radical Reaction Steps |
2023 |
ACS - Journal of Chemical Information and Modeling |
link |
M. Tavakoli, Y.T. Chiu, P. Baldi, A.M. Carlton, and D. Van Vranken, "RMechDB: A Public Database of Elementary Radical Reaction Steps",
Journal of Chemical Information and Modeling,
DOI: 10.1021/acs.jcim.2c01359 |
Quantum Mechanics and Machine Learning Synergies: Graph Attention Neural Networks to Predict Chemical Reactivity |
2022 |
ACS - Journal of Chemical Information and Modeling |
link |
Tavakoli, M., Mood, A., Van Vranken, D. and Baldi, P., 2022. Quantum mechanics and machine learning synergies: graph attention neural networks to predict chemical reactivity. Journal of Chemical Information and Modeling, 62(9), pp.2121-2132.
|
Rxn Hypergraph: a Hypergraph Attention Model for Chemical Reaction Representation |
2022 |
AAAI Deep Learning on Graphs: Methods and Applications |
link |
Tavakoli, M., Shmakov, A., Ceccarelli, F. and Baldi, P., 2022. Rxn hypergraph: a hypergraph attention model for chemical reaction representation. arXiv preprint arXiv:2201.01196.
|
Methyl Cation Affinities of Canonical Organic Functional Groups |
2021 |
ACS - The Journal of Organic Chemistry |
link |
Kadish, D., Mood, A.D., Tavakoli, M., Gutman, E.S., Baldi, P. and Van Vranken, D.L., 2021. Methyl cation affinities of canonical organic functional groups. The Journal of Organic Chemistry, 86(5), pp.3721-3729.
|
Methyl Anion Affinities of the Canonical Organic Functional Groups |
2020 |
ACS - The Journal of Organic Chemistry |
link |
Mood, A., Tavakoli, M., Gutman, E., Kadish, D., Baldi, P. and Van Vranken, D.L., 2020. Methyl Anion Affinities of the Canonical Organic Functional Groups. The Journal of organic chemistry, 85(6), pp.4096-4102.
|
Continuous Representation of Molecules Using Graph Variational Autoencoder |
2020 |
AAAI Spring Symposium: MLPS |
link |
Tavakoli, M. and Baldi, P., 2020. Continuous representation of molecules using graph variational autoencoder. arXiv preprint arXiv:2004.08152.
|
Deep Learning for Chemical Reaction Prediction |
2018 |
RCS - Molecular Systems Design & Engineering |
link |
Fooshee, D., Mood, A., Gutman, E., Tavakoli, M., Urban, G., Liu, F., Huynh, N., Van Vranken, D. and Baldi, P., 2018. Deep learning for chemical reaction prediction. Molecular Systems Design & Engineering, 3(3), pp.442-452.
|